NICOTINE DELIVERY-ISSUES AND TECHNOLOGY

Jed E. Rose, Ph.D.
Center for Nicotine and Smoking
Cessation Research
Duke University Medical Center

- 1. "To what degree is habit maintenance reinforced by the nicotine content and delivery itself and/or by factors other than nicotine?"
- 2. "What predictors of quitting and relapse exist, how strong are they and how might these interact with the existence of potential reduced risk tobacco products?"

- 1. PHARMACOLOGY AND PHARMACOKINETICS OF NICOTINE
- 2. SENSORY/HABIT FACTORS IN TOBACCO ADDICTION
- 3. IMPLICATIONS FOR SMOKING CESSATION AND REDUCED RISK PRODUCTS

NICOTINE

A₁ Excitation by transmitter due to opening an ion channel

PET Image of Human Brain with 2-[18F]Fluoro-A-85380

PHARMACOKINETICS OF INHALED NICOTINE

Measurement of arterial blood nicotine concentrations every 5 s during cigarette smoking *vs.* IV nicotine administration

Sample:

13 smokers (10 males, 3 females)

Characteristics	mean (SD)
Age (yr.)	38 (7.9)
Cigs/day	28 (11)
FTND score	7.0 (1.6)
FTC nicotine	0.7 (.34)
Puff vol. (ml)	48 (28)
Dose/puff (mg)	.12 (.04)
# puffs	6.2 (1.9)
Interpuff interval (s)	66 (31)

TEMPORAL PATTERN OF ARTERIAL NICOTINE CONCENTRATION: PREDICTED VS. MEASURED

Short-term distribution of nicotine in the rat lung (courtesy of Peter P. Rowell, Ph.D.)

Rose et al. Pharmacology Biochemistry and Behavior 67 (2000) 71-81.

GROUP	CIGARETTE	I.V. CONDITION
1	DENIC (or no smoking)	
		Continuous Nicotine
2	DENIC (or no smoking)	
		Pulsed Nicotine
3	DENIC (or no smoking)	
		Saline
4	USUAL BRAND (or no smoking)	
		Saline

CRAVING REDUCTION

EFFECTS ON AD LIB SMOKING BEHAVIOR OF CONTROLLED PRESENTATIONS OF SMOKE COMPONENTS VS. IV NICOTINE

EXPERIMENTAL CONDITIONS

CONDITION	CONTROLLED SMOKE	IV
Α	USUAL BRAND	SALINE
В	DENICOTINIZED	SALINE
С	DENICOTINIZED	NICOTINE (pulsed)
D	NO SMOKE	NICOTINE (pulsed)
E	NO SMOKE	NICOTINE (slow infusion)
F	NO SMOKE	SALINE

Apparatus for delivering smoke doses and for assessing *ad lib* smoking

Controlled Puff Apparatus

CReSS Smoking Topography Monitor (ad lib smoking)

AD LIB SMOKING

SMOKE/IV NICOTINE PREFERENCE TEST APPARATUS

PREFERENCE TEST RESULTS

PHARMACOLOGIC AND HABIT/SENSORY COMPONENTS OF CIGARETTE SMOKING

Stimuli

Control

Male

Control

Smoking

Cue-Induced Responses (Across smoking conditions)

Ventral Striatum/Ventral ACC

Stimulus, p = .074

Cue-induced effects (Across smoking conditions)

Superior Frontal Gyrus

Stimulus, p = .009

Abstinence-induced changes in self-report craving correlate with event-related fMRI responses to smoking cues.

McClernon FJ, Hiott FB, Huettel SA, Rose JE

Neuropsychopharmacology, in press, 2005

Katz IM et al. (2001) Diabetes Technology & Therapeutics 3:387-397.

Citric acid aerosol as a potential smoking cessation aid JE Rose and CS Hickman

Chest, Vol 92, 1005-1008

Development of a citric acid aerosol as a smoking cessation aid

Levin ED, Rose JE, Behm F.

Drug Alcohol Depend 1990 Jun;25(3):273-9.

Clinical evaluation of a citric acid inhaler for smoking cessation

Behm FM, Schur C, Levin ED, Tashkin DP, Rose JE

Drug Alcohol Depend 1993 Jan;31(2):131-8.

HAND-HELD AEROSOL DELIVERY SYSTEM

DELIVERY SYSTEM

Airway sensory replacement combined with nicotine replacement for smoking cessation. A randomized, placebo-controlled trial using a citric acid inhaler

EC Westman, FM Behm and JE Rose

Chest, Vol 107, 1358-1364, 1995

Continuous Smoking Abstinence Citric Acid Inhaler and Nicotine Patch vs. Lactose Inhaler and Nicotine Patch

USE OF LOW NICOTINE CONTENT TOBACCO CIGARETTES IN SMOKING CESSATION TREATMENT

Research Design

Event-related fMRI results

Ventral Striatum: Stimulus x Scan x Group*, p =

.041

Event-related fMRI results Thalamus: Stimulus x Scan x Group*, p = .031

CONCLUSIONS

- 1. Nicotine plays a major role in tobacco addiction; nicotine absorption from cigarette smoking is fast, but not substantially more rapid than IV administration or nasal spray administration. 5-10 min bolus may be as effective as 5-10 s bolus.
- 2. Rapid nicotine administration (e.g. 5 min) appears to relieve craving for cigarettes more effectively than slow (e.g. 40 min) nicotine administration.

- 3. Sensory cues, both exteroceptive and interoceptive, also play a major role in tobacco addiction.
- 4. Therapeutic strategies that entail substituting for these cues, or, alternatively, attenuating their potency (e.g. extinction therapy), may be promising avenues for new smoking cessation treatments.