turning knowledge into practice

Bioinformatics and Modeling

A. Jamie Cuticchia, Ph.D. Director of Bioinformatics ajc@rti.org

RTI International is a trade name of Research Triangle Institute

August 31, 2005

What is it? Why is it important?

- Bioinformatics is the use of computer hardware, software, and communications to answer biological questions
- Data is continuing to accumulate with doubling times of less than 8 months for most major data sources
- More "in silico" work is required to rank drug targets prior to initiating clinical trials
- Nearly every major NIH Roadmap Initiative has a bioinformatics component
- Consulting groups have estimated the bioinformatics market eclipsed the film industry in size in 2004 with a total market size of \$6 - 9 Billion, \$23-27BB by 2009!

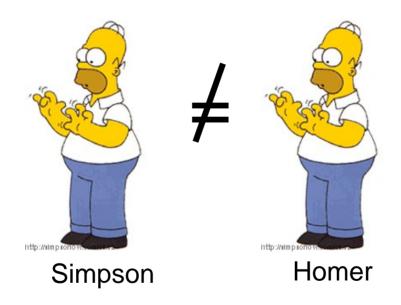
Topics to be Covered

Data Warehousing and Federation

Modeling

Data Warehousing

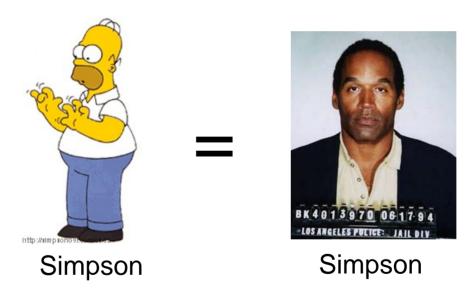
- Simply put, find a safe place to store data.
- Data can be from multiple sources.


Data Coordinating Centers

- Only a start to the process
- May need themselves to be "coordinated" with other centers
- Consistent Q/A Q/C
- Consistent Vocabulary

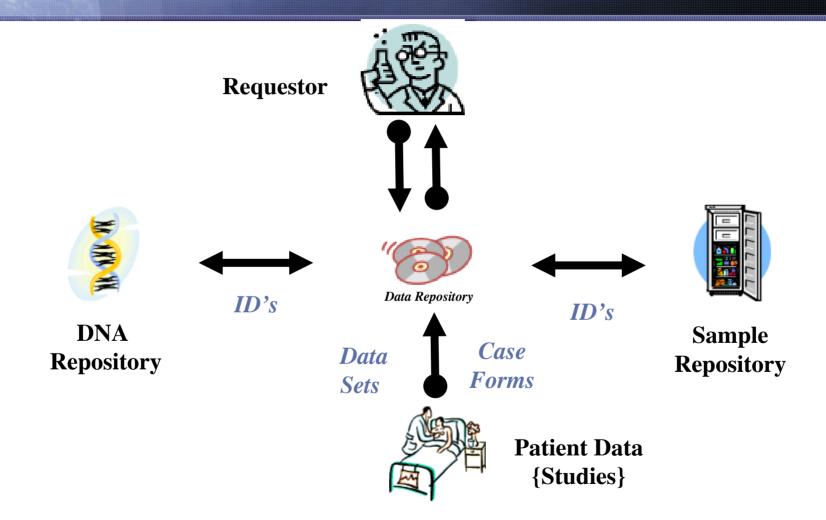
Do Data Across Database Point to the Same "Thing"

(a) Two Identical Records Un-matched

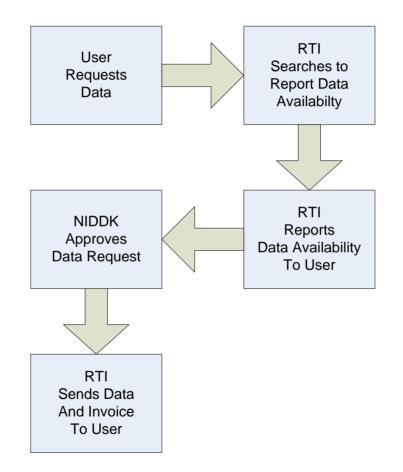


Aliases - terms with almost identical definitions

Do Data Across Database Point to the Same "Thing"


(b) Two Different Records Matched

Synonyms – multiple definitions for one term Created when vocabularies are merged

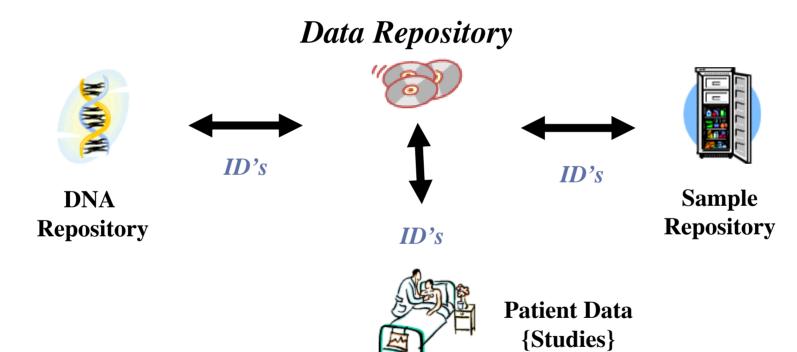


Case Study: NIDDK Central Repositories

Data Release (simplified)

Two Challenges

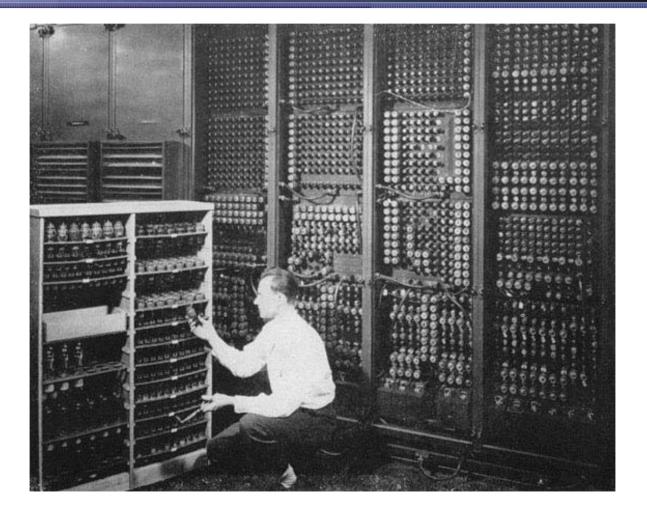
- 1. To keep all the repositories "in synch"
- 2. To attempt to consolidate via a metadictionary identical data types



Synching Data

- Automated
 - All three databases are linked via the Internet and when one gets updated they all do
- File Push
 - At regular times files are sent to the Data Repository with identifiers to link samples to patients
- Chaos
 - Phone calls, data in all different formats (spreadsheets, word documents, SAS), finger pointing

Central Identification


(Im)Perfect Example

Study_name	Rep1_count	Data_count	Diff
А	4245	4029	216
В	5148	5072	76
С	6311	6306	5
D	3664	3667	-3
E	4	4	0
F	947	947	0
Ga 1388	1950	1950	0
Gb 562			

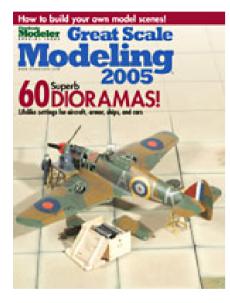
Common Variables from SAS Files

Identify common variables using SAS PROC CONTENTS files

The SAS System 10:12 Monday, June 20, 2005 51

The CONTENTS Procedure

-----Variables Ordered by Position-----


#	Variable	Туре	Len	Format	Informat	Label .		
fff.	<u>fffffffffffffffffffffffffffffffffffff</u>							
1	Barcode	Char	10	\$10.	\$10.	Participant ID		
2	DN_Summary	Num	8			Meets diabetic nephropathy criteria		
3	N_Summary	Num	8			Meets nephropathy criteria		
4	DM_Summary	Num	8			Meets diabetes criteria		
5	Dial_Trans	Num	8			Dialysis or transplant patient		
6	Ht_cm	Num	8			Height used for BMI calculation		
7	Wt_kg	Num	8			Weight used for BMI calculation		
8	BMI_kgm2	Num	8			Body Mass Index (kg/m2)		
9	CIDR	Num	8			Genotyped in first CIDR shipment		
10	Proband	Num	8			Proband or not		
11	Ret_Substudy	Num	8			Enrolled in Retinopathy Ancillary Study		
12	Ace	Num	8			Taking ACE Inhibitors		
13	Age	Num	8			Age at Enrollment		
14	DM_Age	Num	8			Age at Diabetes Onset		

Comparing Studies

- Compare studies by identifying common variables
- Are several clinical trials measuring the same things?
- Similarities of several trials could be summarized with <500 common variables
- Are studies measuring and entering data the same way?
- Different units, different assays
 - This would require a lot more records

Modeling

Concepts in Bioinformatics for Modeling

Computing Support and Spill-over Capabilities

- Furnish/maintain LINUX clusters or similar "big iron"
- Develop/maintain a web portal

Modeling Support

- Data collection activities to support model parameter estimation and validate model predictions
- Model refinement activities
- Model architecture assessments

Portal

Public and private web access to resources

Computing Support and Spill-over Capabilities

Central Resources might provide:

- Development & limited production
- Transparent access to external supercomputers
- Usage statistics collection across all systems
- Simulation experiment data warehouse
- Specialized tools (GIS, analysis, visualization).

Model Types

- Big ones
- Small ones
- Agent Based
- Equation Based

"Spillover" Concept

- Prepares for "surge" capacity.
- Created a change of concept for HPC:
 - No longer the "final stop" for computing but rather,
 - the entry point to larger computing facilities

Methods Used to Spillover

- Implement spillover feature transparently adding nodes to a cluster for research
- Provide a capacity to add hundreds to thousands of nodes and the associated storage capacity
- Maintain a "owned" cluster as the focal point
- Add features to the "owned" cluster to enhance redundancy and continuous operation
- Provide flexibility to balance needs and budget

Methods Used in Spillover

Develop a system of standard workload scheduler queues across all resources that standardize the user interface

- Queues tailored to program type and capacity needs
- Queues to support development environment
- Queues to support production environment
- Queues to support surge environment

Model Support Infrastructure

Objectives

- Collect and maintain data, and software to support model development on a High Performance computing environment
- Capture models and place into a professional, maintainable and secure production environment

General Modeling Support

Computer Science Methods to create a system

- Define a vision of what the system does
- Develop Use case scenarios
- Develop system requirements
- Develop a prototype system
- Test-release andTest-release
- Finalize

Developing a Model Repository

Purpose

- Develop a model release environment for production
- Place models and model results into a DBMS
 - Retrieve model results
 - The code that generated results using a query tool
 - Rerun model
 - Generate summary reports

Model Repository Attributes

- Secure
- Controlled
 - Working with frozen code
 - Releasing models of known pedigree
 - QA/QC benefits
 - Can repeat runs without rerunning model

Sample Model Release Process

Overview

- Model Development verified and frozen
- Generate results
- Load results into data warehouse
- Retrieve results later via Queries from a relational database that resides on the portal
- Retrieve models via Queries from a relational database

