Biomarkers of exposure to environmental tobacco smoke

Gerhard Scherer

ABF Analytisch-Biologisches Forschungslabor GmbH Muenchen, Germany

IEA Committee

Presented at the LSRO Individual Exposure Assessment Committee meeting in Bethesda, MD December 13, 2005

Overview

- Concept of human biomonitoring
- Exposure to environmental tobacco smoke (ETS) as a risk factor
- ETS: Biomarkers of exposure
- ETS: Biomarkers of effect
- Conclusions
- References

Assessing the exposure of humans

Methods of assessing the exposure in human studies

Paradigm of biomonitoring and biomarkers

Environmental tobacco smoke (ETS) (1)

• Since 1980 almost 100 epidemiological studies on the effects (primarily lung cancer) of exposure to ETS ("passive smoking") have been performed.

Environmental tobacco smoke (ETS)

- As a consequence, ETS has been classified as a 'human carcinogen' by many agencies, e.g.:
 - US EPA, 1992
 - German MAK, 1998
 - National Toxicology Program, 2000
 - IARC, 2004

Environmental tobacco smoke (ETS)

- ETS is a dynamic mixture consisting of 80 90 % of diluted sidestream smoke and 10 20 % exhaled mainstream smoke
- The chemical composition of ETS is almost identical to mainstream smoke in <u>qualitative</u> terms, but different in <u>quantitative</u> terms
 - ⇒ In principle, the same biomarkers are suitable for both active and passive smoking (however, a much higher sensitivity is required for biomonitoring the exposure to ETS!)
- Unlike other complex mixtures (e.g., polluted ambient air, diesel exhaust), ETS contains some source-specific compounds (e.g., nicotine, tobacco-specific nitrosamines) which give rise to specific biomarkers for ETS exposure (e.g., cotinine, NNAL).
- Except for assessing the extent of ETS exposure, cotinine in body fluids can be also used to identify misclassified smokers

 $(\mathbf{3})$

Biomarkers of exposure

"The evidence presented in this review indicates that cotinine levels provide a valid and quantititve measure of average human ETS exposure over time. Cotinine is clearly the best available biomarker of ETS exposure at present."

Benowitz, N.L. (1996) Cotinine as a biomarker for Environmental Tobacco Smoke Exposure. *Epidemiologic Reviews*, 18: 188-204

ETS: Cotinine in the (US) population

Pirkle et al. (1996), JAMA 275: 1233-1240

• Representative US population, age ≥ 4 years, 10642 had cotinine measurements

ETS: Cotinine and self-reported exposure

Heller et al. (1993), Indoor air '93, Proceeding Vol 3: 361-365

• MONICA Study in Southern Germany, 1490 never smokers (1989/90)

Mean serum cotinine levels (ng/ml) with 95 % confidence intervals

Cotinine in body fluids: *Ratio: Smokers/Nonsmokers*

Study	Body fluid	Not exposed to ETS	Exposed to ETS
	Plasma	344	138
Jarvis et al., 1984	Urine	927	181
	Saliva	443	124
Wald et al., 1984	Urine	914	56
Thompson et al., 1990	Urine	384	148
Tunstall-Pedoe et al, 1991	Plasma	Males: 353 Females: 2430	

Carbon monoxide (CO):

Biomarkers

	Carboxyher (COF	Carboxyhemoglobin (COHb)		
Biological matri	ix Blood	(invasive)	Exhaled air	
Half live		2 - 4 h (depending	on physical activity)	
Background lev	els ~	1 %	2 – 3 ppm	
Levels in smoke	rs 4.	- 8 %	10 – 50 ppm	
Interference		Endogenous CO form		
Biomarker	Nonsmokers not exposed to ETS	Nonsmokers Exposed to ETS	Reference / Remarks	
COHb (%)	0.72 (N = 41)	0.63 (N = 130)	Szadkowski et al., 1976	
COex (ppm)	7.1 (N = 828)	7.7*** (N = 244)	Svendsen et al., 1987	
COex (ppm)	2.5 (N = 100)	5.0*** (N = 100)	Laranjeira et al., 2000	
***: p < 0.001			14	

Benzene: Levels in ETS

Benzene yields in mainstream smoke of cigarettes: 28.0 - 105.9 µg/cig*

Benzene yields in sidestream smoke of cigarettes: 70.7 – 134.3 µg/cig*

Benzene in ETS:	Control (No smoking)	Smoking	Reference /Remarks
-	5 0	$0.4 \dots \pi/m^3$	Scherer & Adlkofer, 1999 /
	5.9 μg/m² 9.4 μg/	9.4 μg/m ²	Average in realistic rooms
	1.6 ug/m3	16 ug/m3	ABF 2004 /
	1.0 μg/m ²	10 μg/m²	Experim. room, low IAQ

Other sources:

- Traffic exhausts
- Fuels

Benzene: *Biomarkers*

ť	rans,trans-Muconi (t,t-MA)	ic Acid S-Pł	nenylmercapturic acid (SPMA)
Biological matrix Half live Background leve Levels in smoker Interference	x Urine 5 - 8 h els 50 - 60 μ cs 100 – 300 μ Sorbic ac	g/g crea. µg/g crea. cid	Urine 9 h 0.1 μg/24 h 2 – 10 μg/24h None
Biomarker	Nonsmokers not exposed to ETS	Nonsmokers Exposed to ETS	Reference / Remarks
<i>t.t</i> -МА (ц g/g)	92	126	Scherer et al. 1995 ⇒
·/· ····· (P8'8)	(N = 39)	(N = 43)	
<i>t,t</i> -MA (μg/g)	(N = 39) 64 (N = 39)	(N = 43) 91 (N = 39)	Weaver et al., 1996

Benzene: Relationship between tt-MA excretion and ETS exposure

Scherer et al, 1995

Acrolein: Levels in ETS

Acrolein yields in mainstream smoke of cigarettes: 51.2 - 223.4 µg/cig*

Acrolein yields in sidestream smoke of cigarettes: 342.1 – 522.7 µg/cig*

Acrolein in ETS:	Control (No smoking)	Smoking	Reference /Remarks
_			Scherer & Adlkofer, 1999 /
	8.4 μg/m ³	10.5 μg/m ³	Average in ca. 70 realistic
			rooms
	0.4 μg/m ³ 8.8 μg/m ³	9 9 u a/m3	ABF 2004 /
		o.o μg/m²	Experim. room, low IAQ

Other sources:

- Traffic exhausts
- Heating of fat

* Massachusetts smoking parameters (IARC, 2004)

Acrolein: Biomarkers

3-Hydroxypropylmercapturic Acid (HPMA)

Biological matrix Half live Background levels Levels in smokers Interference Urine 6 - 9 h 150 - 450 μg/24 h 500 – 1500 μg/24 h Endogenous formation (Lipid peroxidation)

Riomarlzor	Nonsmokers	Nonsmokers	Dafaranca /Domarka
Divillar Kei	not exposed to ETS	Exposed to ETS	Neiti thte / Neiliai KS
	200	750*	Scherer et al., 1992 / ⇒
HPMA (µg/24 h)	(N = 5)	(N = 5)	Experimental study with high ETS exposure
HPMA (µg/24 h)	324	353	
	(N = 55)	(N = 45)	Scherer et al., unpubl. ⇒

*: p < 0.05

Acrolein: *Biomarkers*

Acrolein: Biomarkers

Scherer et al, unpublished

Pyrene (surrogate for polycyclic aromatic hydrocarbons): *Levels in ETS*

Pyrene yields in mainstream smoke of cigarettes: 45 ng/cig*

Pyrene yields in sidestream smoke of cigarettes:

476 ng/cig*

Pyrene in ETS:	Control (No smoking)	Smoking	Reference /Remarks
	$16 0.3 ng/m^3$		Chuang et al., 1991 /
	$4.0 - 9.5 \text{ Hg/m}^{\circ}$ $4.5 - 11 \text{ Hg/m}^{\circ}$	8 homes	
		2.7 – 11.8 ng/m³	Husgafvel-Pursiainen et al., 1986 /
			Restaurants
	18.0 ng/m^3	21.9 ng/m^3	ABF 2004 /
	10.9 llg/lll°	21.8 llg/lll°	Experim. room, low IAQ

Other sources:

- Traffic exhausts
- Heating exhausts

Pyrene (surr	ogate for PAH) :	Biomarke	rs		
1-Hydroxypyrene (1-OHP)					
Biological matr Half live Background lev Levels in smok Interference	rix Uria 20 vels 0.05 µg ers 1.00 µg Di	ne) h g/24 h g/24 h iet			
Biomarker	Nonsmokers not exposed to ETS	Nonsmokers Exposed to ETS	Reference /Remarks		
1-OHP (µg/24 h)	0.171 (N = 23)	0.140 (N = 19)	Scherer et al., 2000 ⇒		
1-OHP (μmol/mol crea.)	0.32 (N = 126)	0.36 (N = 286)	Siwinska et al., 1999		

Pyrene: Relationship between 1-OHP excretion and ETS exposure

Scherer et al, 2000

Benzo[a]pyrene (BaP): Levels in ETS

BaP yields in mainstream smoke of cigarettes: 5.6 - 41.5 ng/cig*

BaP yields in sidestream smoke of cigarettes: 51.8 – 94.5 ng/cig*

BaP in ETS:	Control	Smoking	Reference /Remarks	
	(No smoking)	0		
	$0.27 = 0.58 \text{ mg/m}^3$	$0.27 - 0.58 \ ng/m^3 0.37 - 1.7 \ ng/m^3$	Chuang et al., 1991 /	
	0.27 - 0.30 lig/lif		8 homes	
		2.2 – 13.3 ng/m ³	Husgafvel-Pursiainen et al., 1986 /	
			Restaurants	
	174	5.45 ng/m³	ABF 2004 /	
	1./4 llg/lll ²		Experim. room, low IAQ	

Other sources:

- Traffic exhausts
- Heating exhausts

* Massachusetts smoking parameters (IARC, 2004)

Benzo[a]pyrene (BaP): *Biomarkers*

BaP-Ho (B	emoglobin adducts aP-Hb)	BaP-Albumin adducts (BaP-Alb)	
Biological matrix	Blood	Plasma	
Half live	4 months (life-tim	e) 20 d	
Background levels	variable (dependent on the method)		
Levels in smokers	variable (dependent on the method)		
Interference	Diet	Diet	

Biomarker	Nonsmokers	Nonsmokers Exposed to ETS	Reference / Remarks
BaP-Alb (fmol/µg)	0.15	0.35*	Crawford et al., 1994
	(N = 23)	(N = 31)	Children
BaP-Alb (fmol/µg)	0.185	0.437*	Tang et al., 1999
	(N = 24)	(N = 82)	Children

*: p < 0.05

Benzo[a]pyrene (BaP): *Biomarkers*

Benzo[a]pyrene (BaP) and PAH: *Biomarkers*

- <u>Mooney et al. (1995):</u> PAH-DNA adducts (determined by ELISA) were significantly higher when there was another smoker at home
- <u>Petruzzelli et al. (1998):</u> Anti-BPDE*-DNA antibodies in serum were not associated with passive smoking.
- <u>Shinozaki et al. (1999):</u> BPDE-DNA adducts in peripheral lymphocytes were not associated with passive smoking.
- <u>Zenzes et al. (1998):</u> PAH-DNA adduct levels in granulosa-lutein cell of IVF-patients were twice as high in passive smokers compared to nonsmokers. Passive smokers had cotinine concentrations in follicular fluid 1/10 of active smoker!

PAH / ³²P-Postlabelling: *Biomarkers*

- <u>Holz et al. (1990):</u> No increase of DNA adducts in peripheral monocytes after high experimental exposure to ETS.
- <u>Georgiadis et al. (2001)</u>: DNA adduct levels in lymphocytes paralleled the ETS exposure as determined by reported times of ETS exposure 24 h prior to blood sampling, serum cotinine or chrysene/benzo[g,h,i]perylene ratio.
- *Everson et al. (1986):* DNA adducts in placenta of nonsmokers are possibly related to ETS exposure (N = 3!).
- <u>Daube et al. (1997):</u> No evidence for elevated DNA adduct levels after exposure to tobacco smoke (active and passive smoking).

4-Aminobiphenyl (4-ABP): Levels in ETS

4-ABP yields in mainstream smoke of cigarettes: **1.8 - 7.8 ng/cig***

BaP yields in sidestream smoke of cigarettes: 20.8 – 31.8 ng/cig*

4-ABP in ETS:	Control (No smoking)	Smoking	Reference /Remarks
_	0.051 ng/m ³	0.11 – 0.20 ng/m ³ (2 Offices, 1 hair Luce dresser saloon)	
	(Train)		Luceri et al., 1993
	$5 - 11 \text{ ng/m}^3$	15 – 33 ng/m ³	Palmiotto et al., 2001 /
	(sum of 9 amines)	(sum of 9 amines)	9 Homes
	0.000	0.582 ng/m ³	ABF 2004 /
	0.020 llg/lll*		Experim. room, low IAQ

Other sources:

* Massachusetts smoking parameters (IARC, 2004)

?

4-Aminobiphenyl (4-ABP): *Biomarkers*

4-ABP-Hemoglobin adducts

(4-ABP-Hb)

Biological matrix Half live Background levels Levels in smokers Interference

Blood 4 months (life-time) 10 – 50 pg/g 50 – 500 pg/g 4-NBP¹ (exhausts), diet, hair dyes

Biomarker	Nonsmokers not exposed to ETS	Nonsmokers Exposed to ETS	Reference /Remarks
A ADD Hb (pg/g)	42 - 50	45 – 54 (*)	MaChura at al. 1080
4-АВР-НD (pg/g)	(N = 44)	(N = 31)	MaClule et al., 1989 🗸
A ABD Hb (pg/g)	17.6	27.8*	Hammond et al., 1993
4-ADF-П0 (рg/g)	(N = 7)	(N = 9)	(Pregnant women)
A-ABP-Hh (ng/g)	10.6	9.3 – 10.6	Branner et al., 1998 ⇔
4-ADF-ID (pg/g)	(N = 27)	(N = 9)	(Pregnant women)

¹ 4-NBP: 4-Nitrobiphenyl

(*): p = 0.06; *: p < 0.05

4-Aminobiphenyl (4-ABP): Biomarkers

Branner et al., 1998

MaClure et al., 1989

4-Aminobiphenyl (4-ABP):BiomarkersBiomarkerNonsmokersNonsmokersBiomarkerNonsmokersNonsmokersnot exposed to ETSExposed to ETS

	99 / ⇔
(N = 10) (N = 41) Infants	

*: p < 0.05

NNK: Levels in ETS

NNK yields in mainstream smoke of cigarettes: 53.5 - 220.7 ng/cig*

* Massachusetts smoking parameters (IARC, 2004); ** ISO/FTC smoking parameters

NNK:	Biomarkers			
	NNAL/NN	IAL-Glucuronide		
	(Tota	l NNAL)		
Biological mat	rix U	rine		
Half live	I f live1 d (Phase 2: 6 weeks)			
Background le	evels <	LOD (< 3 pmol/24	4 h)	
Levels in smol	xers 32	200 pmol/24 h		
Interference	Ν	one		
D '	Nonsmokers	Nonsmokers	Deferrer /Demoster	
Biomarker	not exposed to ETS	Exposed to ETS	Reference /Remarks	
NNAL-Gluc	0.012	0.059**		
(pmol/ml)	(N = 5)	(N = 9)	Parsons et al., 1998 ⇒	
Total NNAL	< 3	43.3*	Magazzat al 2000 E	
(pmol/24 h)	(N = 12)	(N = 17)	Meger et al., 2000 🛩	
Total NNAL	0.007	0.050*		
(pmol/ml)	(N = 22)	(N = 23)	Anderson et al., 2001	
Total NNAL	0.035	0.095*	Hecht et al., 2001 / ⇒	
(pmol/ml)	(N = 35)	(N = 38)	Children 36	
f: p < 0.05; **: p < 0.01				

NNK:

Biomarkers

Meger et al., 2000

NNK: B

Biomarkers

Fig. 3. Relationship between urinary cotinine and NNAL-Gluc in nonsmokers exposed to ETS (r = 0.51; P = 0.029).

Parsons et al., 1998

Fig. 5. Relationship between levels of total cotinine and NNAL plus NNAL-Gluc in the urine of 74 children. r = 0.71; P < 0.0001.

Hecht et al., 2001

Ethylene (E) / Ethylene oxide (EO):Levels in ETSE (EO) yields in mainstream smoke of cigarettes: $300 (7) \mu g/cig^*$ E yields in sidestream smoke of cigarettes: $2000 \mu g/cig^*$ E yields in sidestream smoke of cigarettes: $2000 \mu g/cig^*$ E in ETS:Control
(No smoking)Reference / Remarks $5 \mu g/m^3$ $100 - 250 \mu g/m^3$ Persson et al., 1988 /
Experimental room

Other sources:

- Traffic exhausts
- Terrestrial and marine organisms

Ethylene / Ethylene oxide: *Biomarkers*

N-(2-Hydroxyethyl)valine Hemoglobin adducts (OHEtVal)

Biological matrix Half live Background levels Levels in smokers Interference

Blood 4 months (life-time) 10 -20 pmol/g 50 - 200 pmol/g Endogenous formation

Biomonizon	Nonsmokers	Nonsmokers	rs Doforonoo / Domorks	
DIUIIIAI KEI	not exposed to ETS	Exposed to ETS	Kelerence / Kelliarks	
OHEtVal	17.0	16.6	Bono et al et al., 1999 /	
(pmol/g)	(N = 74)	(N = 28)	No difference in urinary cotinine was found!	
OHEtVal	21.3	20.8		
(pmol/g)	(N = 55)	(N = 45)	Scherer et al., unpubl. 🛩	

Ethylene / Ethylene oxide: *Biomarkers*

Scherer et al., unpublished

e of cigarettes:	7.8 - 39.1 μg/cig*
of cigarettes:	24.1 – 43.9 μg/cig*
Smoking	Reference /Remarks
0.8 μg/m ³ (Family room) 0.6 μg/m ³ (upstairs bedroom)	Guerin et al, 1992
	of cigarettes: Smoking 0.8 µg/m ³ (Family room) 0.6 µg/m ³ (upstairs bedroom)

Other sources:

- Certain workplaces
- ?

Acrylonitrile: Biomarkers				
Cyanoethylvaline Hemoglobin adducts				
	((CyEtVal)		
Biological matr	ix	Blood		
Half live	4	months (life-time)		
Background lev	ackground levels 2 - 3 pmol/g			
Levels in smokers 30 - 250 pmol/g				
Interference	rference None			
	Nonsmokers	Nonsmokers		
Biomarker			Reference / Remarks	
	not exposed to ETS	Exposed to ETS		
CyEtVal	5.4	7.8 ^(*)	Schoror at al uppubl	
(pmol/g)	(N = 55)	(N = 45)		

(*): p = 0.061

Acrylonitrile: Biomarkers

Scherer et al., unpublished

Methylating and ethylating agents (MA and EA): Levels in ETS

MA: e.g., N-nitrosodimethylamine (NDMA), NNK, methyl halides
NDMA yields in mainstream smoke of cigarettes: ~ 100 ng/cig*
NDMA yields in sidestream smoke of cigarettes: 200 – 1040 ng/cig*
EA: unknown! N-nitrosodiethylamine (NDEA)?, ethyl chloride?, NMEA?
NDEA yields in mainstream smoke of cigarettes: ~ 5 ng/cig*
NDEA yields in sidestream smoke of cigarettes: ~ 50 ng/cig*

NDMA/NDEA in ETS:

Control		Smoking	Deference /Demortes	
	(No smoking)	Smoking	Kererence / Kemarks	
NDMA	10.4 ng/m³	31.2 ng/m³	Scherer & Adlkofer, 1999 /	
	(14 Rooms)	(55 Rooms)	Average in realistic rooms	
		nd – 8.6 ng/m ³	$K_{\rm hus}$ at al 1097 /	
NDLA		(Office, 9 conditions)	Kius et al., 19877	

Other sources:

- Cooking
- Rubber

Methylating	ents: B	Biomarkers		
	3-Methyladenin (3-MeA	ne 3-Ethylad (3-EtA)	enine	Methyl-valine Hb MeVal
Biological matrix	Urine	Urine		Blood
Half live	~ 12 h	~ 12 l	1	4 months
Background levels	1 – 5 μg/2	4h 10 – 30 n	g/24h	300 pmol/g
Levels in smokers	10 - 20 µg	/24 h 100 - 200	ng/24h	400 pmol/g
Interference	Diet	Diet		Endogenous
Biomarker	Nonsmokers not exposed to ETS	Nonsmokers Exposed to ETS	Refe	erence /Remarks
3-MeA (ug/24h)	4.7 – 5.9	4.8 – 4.9		
5-MCA (µg/2411)	(N = 5)	(N = 5)	Kop	plin et al., 1995 ⇒
3-FtA (ng/24 h)	14 - 31	18 - 25	 Diet controlled study with high experimental ETS exposure 	
$\mathbf{J} = \mathbf{L} \mathbf{L} \mathbf{A} \left(\mathbf{H} \mathbf{g} / \mathbf{Z} + \mathbf{H} \right)$	(N = 5)	(N = 5)		
MoVel (pmel/g)	309	298		
(pinoi/g)	(N = 55)	(N = 45)	Scher	

Methylating/ethylating agents:

Biomarkers

Kopplin et al., 1995

Methylating agents: Biomarkers

Scherer et al., unpublished

Mutagens: *Properties in ETS*

- No unique class of compounds in tobacco smoke.
- PAH, N-heterocyclic amines, aromatic amines etc. contribute to the mutagenic activity of tobacco smoke.
- Mutagens are mainly located in the particulate phase of ETS (90 %) (Salomaa et al, 1988).
- Mutagens in tobacco smoke are indirect mutagens, i.e. they require metabolic activation before being mutagenic.
- Other sources for airborne mutagens: Organic combustion products (heating, combustion engines, cooking, etc.)

	Mutagenic activity of urine extracts
Biological matrix	Urine
Half live	7 h
Background levels	depending in bacterial strain (TA98, YG1024)
Levels in smokers	10 – 20-fold of background
Interference	Diet

Biomarker	Nonsmokers Exposed to ETS	Reference / Remarks
Mutagenic activity with TA98 +S9 (cigarette equivalents)	0.8 * (N = 8)	Bos et al., 1983 Experimental exposure to ETS
66	$4 - 5^{*}$ (N = 6)	Mohtashamipur et al., 1987 High exp. exposure to ETS
	0.2 (N = 5)	Scherer et al., 1990 High exp. exposure to ETS

Diamontzon	NonsmokersNonsmokersnot exposed to ETSExposed to ETS		Doforonoo / Domortza	
Diomarker			Kelerence / Kelliarks	
Rev/25 µl urine	4.2 4.7		Husgafvel-Pursiainen et al., 1987 /	
with TA98+S9	(N = 20)	(N = 27)	ETS exposed restaurant personnel	
Rev/µmol crea.	No correlation with urinary cotinine		Kado et al., 1987 ⇒	
With TA98+S9	(N = 13)		Pilot study with clerks	
Rev/mmol crea.	0	182 $(N = 4)^1$	Bartsch et al., 1990 /	
With TA98+S9	(N = 35)	509 $(N = 11)^2$	ETS exposed restaurant personnel	
Rev/g crea.	9944	15130	Scherer et al., 1996 ⇒	
With YG1024+S9	(N = 10)	(N = 11)	ETS classification: $< 5 \text{ versus} \ge$ 5 µg/g crea. cotinine	

¹ Reporting ETS exposure and nicotine or cotinine detectable in urine

² Reporting ETS exposure, but no nicotine or cotinine detectable in urine

Kado et al., 1987

52

Scherer et al., 1996

ETS: Biomarkers of exposure (except nicotine metabolites) (1)

Biomarker	Precursor in ETS	Other sources	Significant increase
COHb, COex	CO	Traffic, endogenous	$\uparrow \rightarrow$
SCN in body fluids	HCN	Diet	\rightarrow
O Benzene in blood or exhalate	Benzene	Traffic, fuels	$\uparrow \rightarrow$
<i>t,t-</i> MA in urine	Benzene	Traffic, fuels, sorbic acid	$\uparrow \rightarrow$
SPMA in urine	Benzene	Traffic, fuels	$\uparrow \rightarrow$
HPMA in urine	Acrolein	Traffic, heated fat, endogenous	$\uparrow \rightarrow$
1-Hydroxypyrene in urine	Pyrene (PAH)	Traffic, diet	$\uparrow \rightarrow$
O Hydroxy- phenanthrene in urine	Phenanthrene (PAH)	Traffic, diet	\rightarrow
BaP adducts (Hb, albumin)	BaP	Traffic, diet	$\uparrow \rightarrow$

No data shown in this presentation

Scherer & Richter, 1997 (modified)

ETS: Biomarkers of exposure (except nicotine metabolites) (2)

Biomarker	Precursor in ETS	Other sources	Significant increase
Bulky DNA adducts (WBC, placenta)	PAH (probably)	Traffic, diet	$\uparrow \rightarrow$
4-ABP adducts (Hb)	4-ABP	Gas or kerosene heaters, diesel exhaust?, diet?	$\uparrow \rightarrow$
NNAL/NNAL-gluc in urine	NNK	None	↑
HPB adducts (Hb)	NNK, NNN	Myosmine in diet?	\rightarrow
2-Hydroxyethylvaline (Hb)	Ethylene oxide, ethylene	Ambient air, endogenouss	\rightarrow
Cyanoethylvaline (Hb)	Acrylonitrile	(Workplace)	(1)

ETS: Biomarkers of exposure (except nicotine metabolites) (3)

Biomarker	Precursor in ETS	Other sources	Significant increase
3-Methyl-/3-Ethyl- adenine in urine	Methylating and ethylating compounds	Diet	\rightarrow
Mutagenicity in urine	РАН, ННА, АА	Diet	$\uparrow \rightarrow$
Thioethers in urine	Electrophiles	Diet	\rightarrow

ETS: Biomarkers of effect (1)

Biomarker	Causing agent in ETS	Other factors	Significant effect
8-OHdG in urine, WBC, placenta	(Oxidative stress)	Many endogenous and exogenous factors	$\uparrow \rightarrow$
5-HMUra in urine	(Oxidative stress)	Many endogenous and exogenous factors	(↑)
O Nitrated proteins in plasma	(Inflammation)	Many endogenous and exogenous factors	(^)
O Induction of AHH in placenta	PAHs, others	Traffic, diet, medications	(^)
O Hydroxyproline in urine	NO ₂ (?)	Traffic, heating	$\uparrow \rightarrow$
O Total cholesterol in blood	?	Diet, predisposition	$\downarrow \rightarrow$
HDL in blood	?	Diet, predisposition	$\downarrow \rightarrow$
LDL in blood	?	Diet, predisposition	\rightarrow
Triglycerides in blood	?	Diet, predispostion	\rightarrow

Scherer & Richter, 1997 (modified)

ETS: Biomarkers of effect (2)

Biomarker	Causing agent in ETS	Other factors	Significant effect
O Platelet aggregation	?	Diet, medication	(1)
Fibrinogen in plasma	?	Age, BMI, alcohol etc.	(
Carotid wall thickness	?	Diet, predisposition	↑

Conclusions (1)

- Biomonitoring can significantly improve the assessment of the exposure to environmental tobacco smoke (ETS). This is particularly true because source-specific biomarkers are available.
- Source-specific biomarkers for ETS are nicotine metabolites (particularly cotinine) and NNAL/NNAL-glucuronide (metabolites of NNK).
- The exposure dose ratio smoking/passive smoking for the ETSspecific biomarkers is in the range 100 – 200.
- For almost all other biomarkers of exposure to ETS, there is significant interference from background exposure (ambient air, diet, endogenous formation).
- Results of ETS biomarker of exposure studies are partly controversial mainly due to difficulties in controlling the background exposure.

Conclusions (2)

- In principle, biomarkers of effect are unspecific for the underlying exposure(s).
- When studying biomarkers of ETS-related effects, it is essential (and also extremely difficult) to select ETS exposed and suitable unexposed control groups.
- Not unexpectedly, results of studies on biomarkers of ETS-related effects are controversial. In particular, the extent of the observed effects was often similar or only slightly lower than in active smokers.
- This discrepancy has to dissolved in future studies.

References (1)

General literature and Reviews

- 1. Benowitz,N.L. (1996) Cotinine as a biomarker of environmental tobacco smoke exposure. *Epidemiology Reviews*, **18**, 188-204.
- 2. Environmental Protection Agency (1992) *Respiratory Health Effects of Passive Smoking: Lung Cancer and other disorders*. EPA /600/6-90/006F, Washington.
- 3. Guerin, M.R., Jenkins, R.A., and Tomkins, B.A. (1992) *The Chemistry of Environmental Tobacco Smoke: Composition and Measurement*. Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo.
- 4. Institute of Medicine (IOM) (2001) *Clearing the Smoke: Assessing the Science Base for Tobacco Harm Reduction.* National Academy Press, Washington, D.C.
- 5. International Agency for Research on Cancer (2004) Tobacco smoke and involuntary smoking. *IARC Monogr Eval.Carcinog.Risks Hum.*, **83**, 1-1438.
- 6. Lee, P.N. (1999) Uses and abuses of cotinine as a marker of tobacco smoke exposure. In Gorrod, J.W. (ed.) *Nicotine and related compounds and their metabolites*. Elsevier, Amsterdam, Lausanne, Oxford, New York, Shannon, Singapore, Tokyo, pp 669-719.
- 7. Richter, E. and Scherer, G. (2004) Aktives und passives Rauchen. In Marquardt, H. and Schäfer, S. (eds.) *Lehrbuch der Toxikologie*. Wissenschaftliche Verlagsgesellschft mbH, Stuttgart, pp 897-918.
- 8. Rodgman, A. (1992) Environmental tobacco smoke. *Regulatory Toxicology and Pharmacology*, **16**, 223-244.
- 9. Scherer, G. (2005) Biomonitoring of inhaled complex mixtures Ambient air, diesel exhaust and cigarette smoke. *Experimental and Toxicologic Pathology*, **57**, 75-110.
- 10. Scherer, G. and Adlkofer, F. (1999) Tabakrauch in der Raumluft Erfassung der Schadstoffbelastung durch Passivrauchen zur Bewertung des gesundheitlichen Risikos. *Gefahrstoffe Reinhaltung der Luft*, **59**, 435-443.
- 11. Scherer,G. and Richter,E. (1997) Biomonitoring exposure to environmental tobacco smoke (ETS): A critical reappraisal. *Human and Experimental Toxicology*, **16**, 449-459.
- 12. US Department of Health and Human Services (1986) *The Health Consequences of Involuntary Smoking. A Report of the Surgeon General.* US Government Printing Office, Washington DC.
- 13. Lin,Y.S., Kupper,L.L., and Rappaport,S.M. (2005) Air samples versus biomarkers for epidemiology. *Occupational and Environmental Medicine*, 62, 750-760.

References (2)

- 1. Adlkofer, F., Scherer, G., and Heller, W.D. (1984) Hydroxyproline excretion in urine of smokers and passive smokers. *Preventive Medicine*, **13**, 670-679.
- 2. Albertini, R.J. (1999) Biomarker responses in human populations: towards a worldwide map. *Mutation Research*, **428**, 217-226.
- 3. Anderson,K.E., Carmella,S.G., Ye,M., Bliss,R.L., Le,C., Murphy,L., and Hecht,S.S. (2001) Metabolites of a tobacco-specific lung carcinogen in nonsmoking women exposed to environmental tobacco smoke. *Journal of the National Cancer Institute*, **93**, 378-381.
- 4. Bartsch,H., Caporaso,N., Coda,M., Kadlubar,F., Malaveille,C., Skipper,P., Talaska,G., Tannenbaum,S.R., and Vineis,P. (1990) Carcinogen hemoglobin adducts, urinary mutagenicity, and metabolic phenotype in active and passive cigarette smokers. *Journal of the National Cancer Institute*, **82**, 1826-1831.
- 5. Benowitz,N.L. (1996) Cotinine as a biomarker of environmental tobacco smoke exposure. *Epidemiology Reviews*, **18**, 188-204.
- 6. Bianchini,F., Donato,F., Fauré,H., Ravanat,J.L., Hall,J., and Cadet,J. (1998) Urinary excretion of 5-(hydroxymethyl)uracil in healthy volunteers: Effect of active and passive tobacco smoke. *International Journal of Cancer*, **77**, 40-46.
- 7. Bono,R., Vincenti,M., Meineri,V., Pignata,C., Saglia,U., Giachino,O., and Scursatone,E. (1999) Formation of N-(2-hydroxyethyl)valine due to exposure to ethylene oxide via tobacco smoke: a risk factor for onset of cancer. *Environmental Research Section*, **81**, 62-71.
- 8. Bos,R.P., Theuws,J.L.G., and Henderson,P.T.H. (1983) Excretion of mutagens in human urine after passive smoking. *Cancer Letters*, **19**, 85-90.
- 9. Branner, B., Kutzer, C., Zwickenpflug, W., Scherer, G., Heller, W.D., and Richter, E. (1998) Haemoglobin adducts from aromatic amines and tobacco-specific nitrosamines in pregnant smoking and nonsmoking women. *Biomarkers*, **3**, 35-47.
- 10. Buratti, M., Fustinoni, S., and Colombi, A. (1996) Fast liquid chromatographic determination of urinary trans, trans-muconic acid. *Journal of Chromatography*, **677**, 257-263.

References (3)

- 11. Carrer, P., Maroni, M., Alcini, D., Cavallo, D., Fustinoni, S., Lovato, L., and Visigalli, F. (2000) Assessment through environmental and biological measurements of total daily exposure to volatile organic compounds of office workers in Milan, Italy. *Indoor.Air*, **10**, 258-268.
- 12. Celermajer, D.S., Adams, M.R., Clarkson, P., Robinson, J., McCredie, R., Donald, A., and Deanfield, J.E. (1996) Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. *The New England Journal of Medicine*, **334**, 150-154.
- 13. Chuang, J.C., Mack, G.A., Kuhlman, M.R., and Wilson, N.K. (1991) Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study. *Atmospheric Environment*, **25**, 369-380.
- 14. Crawford,F.G., Mayer,J., Santella,R.M., Cooper,T.B., Ottman,R., Tsai,W.Y., Simon-Cereijido,G., Wang,M., Tang,D., and Perera,F.P. (1994) Biomarkers of environmental tobacco smoke in preschool children and their mothers. *Journal of the National Cancer Institute*, **86**, 1398-1402.
- 15. Daube,H., Scherer,G., Riedel,K., Ruppert,T., Tricker,A.R., Rosenbaum,P., and Adlkofer,F. (1997) DNA adducts in human placenta in relation to tobacco smoke exposure and plasma antioxidant status. *Journal of Cancer Research and Clinical Oncology*, **123**, 141-151.
- 16. Deutsche Forschungsgemeinschaft, D. (1998) Passivrauchen. In Greim, H. (ed.) Gesundheitsschädliche Arbeitsstoffe. Wiley-VCH, Weinheim, pp 1-36.
- 17. Dor,F., Dab,W., Empereur-Bissonnet,P., and Zmirou,D. (1999) Validity of biomarkers in environmental health studies: The case of PAHs and benzene. *Critical Reviews in Toxicology*, **29**, 129-168.
- 18. Environmental Protection Agency (1992) *Respiratory Health Effects of Passive Smoking: Lung Cancer and other disorders*. EPA /600/6-90/006F, Washington.
- 19. Everson, R.B., Randerath, E., Santella, R.M., Cefalo, R.C., Avitts, T.A., and Randerath, K. (1986) Detection of smoking-related covalent DNA adducts in human placenta. *Science*, **231**, 54-57.
- 20. Georgiadis, P., Topinka, J., Stoikidou, M., Kaila, S., Gioka, M., Katsouyanni, K., Sram, R., Autrup, H., and Kyrtopoulos, S.A. (2001) Biomarkers of genotoxicity of air pollution (the AULIS project): bulky DNA adducts in subjects with moderate to low exposures to airborne polycyclic aromatic hydrocarbons and their relationship to environmental tobacco smoke and other parameters. *Carcinogenesis*, **22**, 1447-1457.

References (4)

- 21. Guerin, M.R., Jenkins, R.A., and Tomkins, B.A. (1992) *The Chemistry of Environmental Tobacco Smoke: Composition and Measurement*. Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo.
- 22. Hammond,S.K., Coghlin,J., Gann,P.H., Paul,M., Taghizadeh,K., Skipper,P.L., and Tannenbaum,S.R. (1993) Relationship between environmental tobacco smoke exposure and carcinogen-hemoglobin adduct levels in nonsmokers. *Journal of the National Cancer Institute*, **85**, 474-478.
- 23. Hecht,S.S., Ye,M., Carmella,S.G., Fredrickson,A., Adgate,J.L., Greaves,I.A., Church,T.R., Ryan,A.D., Mongin,S.J., and Sexton,K. (2001) Metabolites of a tobacco-specific lung carcinogen in the urine of elementary school-aged children. *Cancer Epidemiol.Biomarkers Prev.*, **10**, 1109-1116.
- 24. Heller,W.D., Sennewald,E., Gostomzyk,J.G., Scherer,G., and Adlkofer,F. (1993) Validation of ETS exposure in a representative population in Southern Germany. In Jantunen,M. (ed.) *Indoor Air '93. The 6th International Conference on Indoor Air Quality and Climate*. Indoor Air '93, Helsinki, pp 361-5.
- 25. Holz,O., Krause,T., Scherer,G., Schmidt-Preuß,U., and Rüdiger,H.W. (1990) 32P-postlabelling analysis of DNA adducts in monocytes of smokers and passive smokers. *International Archives of Occupational and Environmental Health*, **62**, 299-303.
- 26. Howard,G., Wagenknecht,L.E., Burke,G.L., Diez-Roux,A., Evans,G.W., McGovern,P., Nieto,J., and Telfs,G.S. (1998) Cigarette smoking and progression of atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) Study. *Journal of American Medical Association*, **279**, 119-124.
- 27. Huel,G., Godin,J., Moreau,T., Girard,F., Sahuquillo,J., Hellier,G., and Blot,P. (1989) Aryl hydrocarbon hydroxylase activity in human placenta of passive smokers. *Environmental Research*, **50**, 173-183.
- 28. Husgafvel-Pursiainen,K., Sorsa,M., Moller,M., and Benestad,C. (1986) Genotoxicity and polynuclear aromatic hydrocarbon analysis of environmental tobacco smoke samples from restaurants. *Mutagenesis*, **1**, 287-292.
- 29. Husgafvel-Pursianinen,K., Sorsa,M., Engström,K., and Einistö,P. (1987) Passive smoking at work: biochemical and biological measures of exposure to environmental tobacco smoke. *International Archives of Occupational and Environmental Health*, **59**, 337-345.
- 30. Institute of Medicine (IOM) (2001) *Clearing the Smoke: Assessing the Science Base for Tobacco Harm* 64 *Reduction.* National Academy Press, Washington, D.C.

References (5)

- 31. International Agency for Research on Cancer (2004) Tobacco smoke and involuntary smoking. *IARC Monogr Eval.Carcinog.Risks Hum.*, **83**, 1-1438.
- 32. Iso,H., Shimamoto,T., Sato,S., Koike,K., Iida,M., and Komachi,Y. (1996) Passive smoking and plasma fibrinogen concentrations. *American Journal of Epidemiology*, **144**, 1151-1154.
- 33. Jarvis, M.J., Tunstall-Pedoe, H., Feyerabend, C., Vesey, C., and Saloojee, Y. (1984) Biochemical markers of smoke absorption and self-reported exposure to passive smoking. *Journal of Epidemiology and Community Health*, **38**, 335-339.
- 34. Kado,N.Y., Tesluk,S.J., Hammond,S.K., Woskie,S.R., Samuels,S.J., and Schenker,M.B. (1987) Use of a salmonella micro pre-incubation procedure for studying personal exposure to mutagens in environmental tobacco smoke: Pilot study of urine and airborne mutagenicity from passive smoking. In Sandhu,S.S. (ed.) *Short-term bioassays in the analysis of complex environmental mixtures V.* Plenum Press, New York, London, pp 375-90.
- 35. Kasuga,H. (1990) An introduction to the study of smoking using urinary hydroxyproline. In Kasuga,H. (ed.) *Indoor Air Quality*. Springer-Verlag, Berlin, pp 37-52.
- 36. Klus,H., Begutter,H., Ball,M., and Intorp,M. (1987) Environmental tobacco smoke in real life situations. In Seifert,B. (ed.) *Indoor Air '87. Proceedings of the 4th International Conference on Indoor Air Quality and Climate. Volatile organic compounds, combustion gases, particles and fibres, microbiological agents.* Institute for Water, Soil and Air Hygiene, Berlin, pp 137-41.
- 37. Kopplin,A., Eberle-Adamkiewicz,G., Glüsenkamp,K.H., Nehls,P., and Kirstein,U. (1995) Urinary excretion of 3-methyladenine and 3-ethyladenine after controlled exposure to tobacco smoke. *Carcinogenesis*, **16**, 2637-2641.
- 38. Laranjeira, R., Pillon, S., and Dunn, J. (2000) Environmental tobacco smoke exposure among non-smoking waiters: measurement of expired carbon monoxide levels. *Sao Paulo Med.J.*, **118**, 89-92.
- 39. Luceri,F., Pieraccini,G., Moneti,G., and Dolara,P. (1993) Primary aromatic amines from side-stream cigarette smoke are common contaminants of indoor air. *Toxicology and Industrial Health*, **9**, 405-413.
- 40. Maclure, M., Katz, R.B.A., Bryant, M.S., Skipper, P.L., and Tannenbaum, S.R. (1989) Elevated blood levels of 65 carcinogens in passive smokers. *American Journal of Public Health*, **79**, 1381-1384.

References (6)

- 41. Manchester, D.K. and Jacoby, E.H. (1981) Sensitivity of human placental monooxygenase activity to maternal smoking. *Clinical Pharmacology and Therapeutics*, **30**, 681-692.
- 42. Matsunga,S.K., Plezia,P.M., Karol,M.D., Katz,M.D., Camilli,A.E., and Benowitz,N.L. (1989) Effects of passive smoking on theophylline clearance. *Clinical Biochemistry*, **46**, 399-407.
- 43. Meger, M., Meger-Kossien, I., Riedel, K., and Scherer, G. (2000) Biomonitoring of environmental tobacco smoke (ETS)-related exposure to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). *Biomarkers*, **5**, 33-45.
- 44. Mohtashamipur, E., Müller, G., Norpoth, K., Endrikat, M., and Stücker, W. (1987) Urinary excretion of mutagens in passive smokers. *Toxicology Letters*, **35**, 141-146.
- 45. Mooney,L.A., Santella,R.M., Covey,L., Jeffrey,A.M., Bigbee,W., Randall,M.C., Cooper,T.B., Ottman,R., Tsai,W.Y., Wazneh,L., Glassman,A.H., Young,T.L., and Perera,F.P. (1995) Decline of DNA damage and other biomarkers in peripheral blood following smoking cessation. *Cancer Epidemiology, Biomarkers & Prevention*, **4**, 627-634.
- Moskowitz, W.B., Mosteller, M., Schieken, R.M., Bossano, R., Hewitt, J.K., Bodurtha, J.N., and Segrest, J.P. (1990) Lipoprotein and oxygen transport alterations in passive smoking preadolescent children. The MCV Twin Study. *Circulation*, 81, 586-592.
- 47. Neufeld,E.J., Mietus-Snyder,M., Beiser,A.S., Baker,A.L., and Newburger,J.W. (1997) Passive cigarette smoking and reduced HDL cholesterol levels in children with high-risk lipid profiles. *Circulation*, **96**, 1403-1407.
- 48. Palmiotto,G., Pieraccini,G., Moneti,G., and Dolara,P. (2001) Determination of the levels of aromatic amines in indoor and outdoor air in Italy. *Chemosphere*, **43**, 355-361.
- 49. Parsons, W.D., Carmella, S.G., Akerkar, S., Bonilla, L.E., and Hecht, S.S. (1998) A metabolite of the tobaccospecific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the urine of hospital workers exposed to environmental tobacco smoke. *Cancer Epidemiology, Biomarkers & Prevention*, **7**, 257-260.
- 50. Persson,K.A., Borg,S., Törnqvist,M., Scalia-Tomba,G.P., and Ehrenberg,L. (1988) Note on Ethene and Other Low-Molecular Weight Hydrocarbons in Environmental Tobacco Smoke. *Acta Chemica Scandinavica*, **42**, 66 690-696.

References (7)

- 51. Petruzzelli,S., Celi,A., Pulerà,N., Baliva,F., Viegi,G., Carrozzi,L., Ciacchini,G., Bottai,M., DiPede,F., Paoletti,P., and Giuntini,C. (1998) Serum antibodies to benzo(a)pyrene diol epoxide-DNA adducts in the general population: Effects of air pollution, tobacco smoking, and family history of lung diseases. *Cancer Research*, **58**, 4122-4126.
- 52. Pilger, A., Germadnik, D., Riedel, K., Meger-Kossien, I., Scherer, G., and Rudiger, H.W. (2001) Longitudinal study of urinary 8-hydroxy-2'-deoxyguanosine excretion in healthy adults. *Free Radic.Res.*, **35**, 273-280.
- 53. Pirkle, J.L., Flegal, K.M., Bernert, J.T., Brody, D.J., Etzel, R.A., and Maurer, K.R. (1996) Exposure of the US population to environmental tobacco smoke. *Journal of American Medical Association*, **275**, 1233-1240.
- 54. Salomaa,S., Tuominen,J., and Skyttä,E. (1988) Genotoxicity and PAC analysis of particulate and vapour phases of environmental tobacco smoke. *Mutation Research*, **204**, 173-183.
- 55. Scherer,G. and Adlkofer,F. (1999) Tabakrauch in der Raumluft Erfassung der Schadstoffbelastung durch Passivrauchen zur Bewertung des gesundheitlichen Risikos. *Gefahrstoffe Reinhaltung der Luft*, **59**, 435-443.
- 56. Scherer,G., Conze,C., Meyerinck,L., Sorsa,M., and Adlkofer,F. (1990) Importance of exposure to gaseous and particulate phase components of tobacco smoke in active and passive smokers. *International Archives of Occupational and Environmental Health*, **62**, 459-466.
- 57. Scherer, G., Conze, C., Tricker, A.R., and Adlkofer, F. (1992) Uptake of tobacco smoke constituents on exposure to environmental tobacco smoke (ETS). *The Clinical Investigator*, **70**, 352-367.
- 58. Scherer,G., Doolittle,D.J., Ruppert,T., Meger-Kossien,I., Riedel,K., Tricker,A.R., and Adlkofer,F. (1996) Urinary mutagenicity and thioethers in nonsmokers: Role of environmental tobacco smoke (ETS) and diet. *Mutation Research*, **368**, 195-204.
- 59. Scherer, G., Frank, S., Riedel, K., Meger-Kossien, I., and Renner, T. (2000) Biomonitoring of exposure to polycyclic aromatic hydrocarbons of nonoccupationally exposed persons. *Cancer Epidemiology, Biomarkers & Prevention*, **9**, 373-380.
- 60. Scherer, G., Ruppert, T., Daube, H., Kossien, I., Riedel, K., Tricker, A.R., and Adlkofer, F. (1995) Contribution of tobacco smoke to environmental benzene exposure in Germany. *Environment International*, **21**, 779-789.67

References (8)

- 61. Shinozaki,R., Inoue,S., Choi,K.S., and Tatsuno,T. (1999) Association of benzo[a]pyrene-dio-epoxidedeoxyribonucleic acid (BPDE-DNA) adduct level with aging in male smokers and nonsmokers. *Archives of Environmental Health*, **54**, 79-85.
- 62. Siwinska, E., Mielzynska, D., Bubak, A., and Smolik, E. (1999) The effect of coal stoves and environmental tobacco smoke on the level of urinary 1-hydroxypyrene. *Mutation Research*, **445**, 147-153.
- 63. Steenland,K., Sieber,K., Etzel,R.A., Pechacek,T., and Maurer,K. (1998) Exposure to environmental tobacco smoke and risk factors for heart disease among never smokers in the third national health and nutrition examination survey. *American Journal of Epidemiology*, **147**, 932-939.
- 64. Svendsen,K.H., Kuller,L.J., Martin,M.J., and Ockene,J.K. (1987) Effects of passive smoking in the multiple risk factor intervention trial. *American Journal of Epidemiology*, **126**, 783-795.
- 65. Szadkowski, D., Harke, H.P., and Angerer, J. (1976) Kohlenmonoxydbelastung durch Passivrauchen in Büroräumen. *Innere Medizin*, **3**, 310-313.
- 66. Tang,D., Warburton,D., Tannenbaum,S.R., Skipper,P., Santella,R.M., Cereijido,G.S., Crawford,F.G., and Perera,F.P. (1999) Molecular and genetic damage from environmental tobacco smoke in young children. *Cancer Epidemiology, Biomarkers & Prevention*, **8**, 427-431.
- 67. Thompson,S.G., Stone,R., Nanchahal,K., and Wald,N.J. (1990) Relation of urinary cotinine concentrations to cigarette smoking and to exposure to other people's smoke. *Journal of the British Thoracic Society*, **45**, 356-361.
- 68. Tunstall-Pedoe,H., Woodward,M., and Brown,C.A. (1991) Tea drinking, passive smoking, smoking deception and serum cotinine in the Scottish Heart Health Study. *Journal of Clinical Epidemiology*, **44**, 1411-1414.
- 69. van Zeeland, A.A., de Groot, A.J.L., Hall, J., and Donato, F. (1999) 8-Hydroxydeoxyguanosine in DNA from leukocytes of healthy adults: relationship with cigarette smoking, environmental tobacco smoke, alcohol and coffee consumption. *Mutation Research*, **439**, 249-257.
- 70. Verplanke, A.J.W., Remijn, B., Hoek, F., Houthuijs, D., Brunekreef, B., and Boleij, J.S.M. (1987) Hydroxyproline excretion in schoolchildren and its relationship to measures of indoor air pollution. *International Archives of Occupational and Environmental Health*, **59**, 221-231.

References (9)

- 71. Wald,N.J., Boreham,J., Bailey,A., Ritchie,C., Haddow,J.E., and Knight,G. (1984) Urinary cotinine as a marker of breathing other people's tobacco smoke. *Lancet*, **1**, 230-231.
- 72. Weaver, V.M., Davoli, C.T., Heller, P.J., Fitzwilliam, A., Peters, H.L., Sunyer, J., Murphy, S.E., Goldstein, G.W., and Groopman, J.D. (1996) Benzene exposure, assessed by urinary trans, trans-muconic acid, in urban children with elevated blood lead levels. *Environmental Health Perspectives*, **104**, 318-323.
- 73. Whyatt,R.M., Garte,S.J., Cosma,G., Bell,D.A., Jedrychowski,W., Wahrendorf,J., Randall,M.C., Cooper,T.B., Ottman,R., Tang,D., Tsai,W.Y., Dickey,C.P., Manchester,N.K., Crofts,F., and Perera,F.P. (1995) CYP1A1 messenger RNA levels in placental tissue as a biomarker of environmental exposure. *Cancer Epidemiology, Biomarkers & Prevention*, **4**, 147-153.
- 74. Zenzes, M.T., Puy, L.A., and Bielecki, R. (1998) Immunodetection of benzo[a]pyrene adducts in ovarian cells of women exposed to cigarette smoke. *Mol.Hum.Reprod.*, **4**, 159-165.