Discussion Chuck Gaworski, M.S., DABT Barbara Zedler, M.D. Philip Morris USA ### Reduced Risk Evaluation #### **Objective: Address IOM Regulatory Principle 4** "(b) if a risk reduction claim is made, that the product can reasonably be expected to reduce the risk of one or more specific diseases or other adverse health effects" * #### Reality: The path to 'reasonable expectation' is undefined Filling the gaps in knowledge will take: - Better mechanistic understanding (disease/exposure/complex mixture interactions) - Additional biomarkers - "...because definitive evidence that a new PREP actually reduces harm will often be unavailable, short-term markers that reflect long-term outcomes are needed." * - "...the use of intermediate markers does not replace long-term follow-up and epidemiological surveillance, but it can be a basis for estimating effects before direct evidence from epidemiological studies is available." - Engagement - Process definition *Institute of Medicine, 2001, Clearing the Smoke: Assessing the Science Base for Tobacco Harm Reduction ### Potential Non-clinical Assays Related to Disease | General | Cancer | COPD | CVD | |---|---|--|--| | Superoxide dismutase Lung inflammation in BALF, (i.e. neutrophils) GSH in biological fluids HO-1 assay | Mutagenicity assay Gap junction assay Micronucleus assay Hprt mutation assay with rat lung fibroblast Cytokeratin expression in rat lung tumors Dermal carcinogenicity model (Sencar mouse) Comet assay Chronic inhalation model for lung cancer Lung tumor progression in transgenic mouse strains | Inactivation of antiproteases Macrophage activation in BALF CD4/CD8 lymphocytes in murine lung tissue Lymphocyte differentiation in murine in lymph nodes Myeloperoxidase in biological fluids Early biomarker of lung damage (CC16) Lung mechanics in rat and mouse models Mouse models of emphysema | Endothelial cell assay Angiogenesis assay Cardiac telemetry Atherosclerosis model (Apo E deficient mouse strain) Cardiovascular disease model (Guineas pigs) Thrombosis model (Apo E-/-) Cardiac function and myocardial hypertrophy (SHHF and JCR stroke prone rat) | Note: Intended to list assays under consideration for use ## Biomarkers of Potential Harm | von Willebrand Factor plasma endothelial cell dysfunction atherosclerosis atherosclerosis atherosclerosis microalbumin nitrate+nitrite, exhaled breath NO cellular adhesion molecules (VCAM-1, ICAM-1, E-selectin) homocysteine (SAM, SAH) blood blood blood blood atherosclerosis white blood cell count (total, subpopulations) interleukins-6, -8 (-10) blood, BALF plasma blood sC-reactive protein inflammation atherosclerosis s C-reactive protein sCD40 L tumor necrosis factor α nuclear factor kappa beta (NF-kB) epidermal growth factor-1 (egr-1) blood blood blood blood atherosclerosis bilirubin serum oxidative stress | Biomarker of Potential Harm | Biomatrix | Pathogenic Mechanism | Health Effect | |--|---|-----------------------------------|------------------------------|-----------------| | interleukins-6, -8 (-10) fibrinogen hs C-reactive protein sCD40 L tumor necrosis factor α nuclear factor kappa beta (NF-kB) epidermal growth factor-1 (egr-1) N-carboxymethyl lysine blood, BALF plasma blood atherosclerosis blood blood blood blood blood blood | microalbumin
nitrate+nitrite, exhaled breath NO
cellular adhesion molecules (VCAM-1, ICAM-1, E-selectin)
homocysteine (SAM, SAH) | urine
plasma
blood
blood | endothelial cell dysfunction | atherosclerosis | | interleukins-6, -8 (-10) fibrinogen plasma hs C-reactive protein sCD40 L tumor necrosis factor α nuclear factor kappa beta (NF-kB) epidermal growth factor-1 (egr-1) N-carboxymethyl lysine blood, BALF plasma blood atherosclerosis blood blood blood blood | | | | | | fibrinogenplasmahs C-reactive proteinbloodsCD40 Lbloodtumor necrosis factor αbloodnuclear factor kappa beta (NF-kB)bloodepidermal growth factor-1 (egr-1)bloodN-carboxymethyl lysineblood | | | inflammation | | | hs C-reactive protein sCD40 L blood tumor necrosis factor α nuclear factor kappa beta (NF-kB) epidermal growth factor-1 (egr-1) N-carboxymethyl lysine blood atherosclerosis blood blood blood blood blood | | | | | | sCD40 L tumor necrosis factor α nuclear factor kappa beta (NF-kB) epidermal growth factor-1 (egr-1) N-carboxymethyl lysine blood blood blood blood | | | | | | tumor necrosis factor αbloodnuclear factor kappa beta (NF-kB)bloodepidermal growth factor-1 (egr-1)bloodN-carboxymethyl lysineblood | hs C-reactive protein | blood | | atherosclerosis | | nuclear factor kappa beta (NF-kB) blood epidermal growth factor-1 (egr-1) blood N-carboxymethyl lysine blood | sCD40 L | blood | | | | epidermal growth factor-1 (egr-1) blood N-carboxymethyl lysine blood | tumor necrosis factor α | blood | | | | N-carboxymethyl lysine blood | nuclear factor kappa beta (NF-kB) | blood | | | | | epidermal growth factor-1 (egr-1) | blood | | | | bilirubin serum oxidative stress | N-carboxymethyl lysine | blood | | | | bilirubin serum oxidative stress | | | | | | | bilirubin | serum | oxidative stress | | | superoxide dismutase (SOD), catalase blood | superoxide dismutase (SOD), catalase | blood | | | | 8-epi-prostaglandin F _{2α} urine | 8-epi-prostaglandin $F_{2\alpha}$ | urine | | | | 15-keto-dihydro-prostaglandin $F_{2\alpha}$ urine | 15-keto-dihydro-prostaglandin F _{2α} | urine | | | | isoprostane F _{2α} -VI urine | isoprostane F _{2α} -VI | urine | | | | H ₂ O ₂ exhaled breath condensate | H_2O_2 exhale | ed breath condens | sate | | rapid-response slow-response LSRO Reduced Risk Review, Core Committee Meeting: October 19, 2005 | Biomarker of Potential Harm | Biomatrix | Pathogenic Mechanism | Health Effect | |--|---|-----------------------------|-----------------| | total, HDL-, LDL-cholesterol triglycerides non-esterified free fatty acids lipoprotein lipase A ₂ paraoxonase | serum
serum
serum
blood
serum | lipoprotein metabolism | atherosclerosis | | 11-dehydrothromboxane B ₂ tissue plaminogen activator | urine
blood | platelet/coagulation status | | | hematocrit
fibrinogen
von Willebrand Factor | blood
blood
plasma | blood viscosity | | | glucose
insulin resistance
hemoglobin A1c | plasma
blood
blood | glucose metabolism | diabetes | rapid-response slow-response | Parameter | Test | Health Effect | |--|--|---| | FEV1, FVC | spirometry | COPD | | arterial elasticity arterial wall thickness | pulse-wave Doppler carotid intima-media thickness | atherosclerosis | | LV diastolic function cardiopulmonary exercise performance blood pressure heart rate (variability) | color Doppler echocardiography treadmill exercise test | atherosclerosis
sympathetic activation | LSRO Reduced Risk Review, Core Committee Meeting: October 19, 2005